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A three factor, three-level Box-Behnken experimental design combining with response surface model-
ing (RSM) and quadratic programming (QP) was employed for maximizing Pb(II) removal from aqueous
solution by Antep pistachio (Pistacia vera L.) shells based on 17 different experimental data obtained in a
lab-scale batch study. Three independent variables (initial pH of solution (pHp) ranging from 2.0 to 5.5,
initial concentration of Pb(II) ions (Cp) ranging from 5 to 50 ppm, and contact time (t¢c) ranging from 5
to 120 min) were consecutively coded as x1, x and x3 at three levels (-1, 0 and 1), and a second-order
polynomial regression equation was then derived to predict responses. The significance of independent
variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95%
confidence limits («=0.05). The standardized effects of the independent variables and their interactions
on the dependent variable were also investigated by preparing a Pareto chart. The optimum values of
the selected variables were obtained by solving the quadratic regression model, as well as by analysing
the response surface contour plots. The optimum coded values of three test variables were computed
as x1 =0.125, x, =0.707, and x5 =0.107 by using a LOQO/AMPL optimization algorithm. The experimental
conditions at this global point were determined to be pHy =3.97, Cp =43.4 ppm, and tc = 68.7 min, and the
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corresponding Pb(II) removal efficiency was found to be about 100%.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With growing urbanization and rapid industrialization, the
problem of the release of toxic heavy metals into the ecosystem has
been of increasing concern in many parts of the world. Since heavy
metals can significantly contaminate the receiving water bodies
even in trace amounts, potential risks of heavy metal pollution can-
not be ignored any longer. Therefore, the removal of heavy metals
from water and wastewater has recently become the subject of con-
siderable interest due to more strict legislations introduced in many
countries to control water pollution [1].

Lead has been recognized one of the most hazardous heavy
metals since mining, acid battery manufacturing, metal plating,
printing, textile, photographic materials, ceramic and glass indus-
tries, explosive manufacturing, and also lead-containing piping
material are the main sources of lead contamination [1,2]. The resul-
tant higher concentrations of lead in the ecosystem have substantial
impacts on the environment and human health. Lead poisoning
causes various severe health problems in vital organs of humans,
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such as damage to the kidney, liver, blood composition, nervous
system, reproductive system and retardation in mental function [3].

Because lead is non-biodegradable and tends to bioaccumulate
in cells of the living organisms, stricter environmental require-
ments and urgent treatment solutions are needed for lead removal
from water and wastewater [3,4]. Current methods for lead removal
include precipitation as hydroxide, carbonate and sulfide pre-
cipitates [5], coagulation/flocculation [6], membrane process [7],
electrochemical process [8], ion exchange [9], biosorption [10], and
adsorption techniques [11]. Among these methods, precipitation of
heavy metals as metal hydroxides or sulfides has been practiced
as the prime method of treatment for heavy metals in industrial
wastewater for many years. However, this process may lead to a spe-
cial problem of sludge handling and costly disposal [3]. Although
membrane filtration and electrochemical process are proven tech-
niques, their high costs limit their use in practice. In addition,
activated carbon is regarded as an effective adsorbent for removal
of metal ions from water, however, due to its high cost and loss dur-
ing regeneration, unconventional low-cost adsorbents such as fly
ash, peat, lignite, bagasse pith, wood, saw dust etc. have attracted
the attention of several investigators in recent years [3]. The shell
of Pistacia vera L. used as an adsorbent in both our previous and the
present studies is an agricultural by-product produced in very large
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quantities particularly in the southeastern part of Turkey. The main
advantages of Pb(II) removal by using pistachio shells is that it is in
abundance and easy availability. This makes it a strong choice in the
investigation of an economic way of Pb(II) removal. From the eco-
nomical point of view, pistachio shells can be used as an alternative
media to activated carbon, as well as to gain an understanding of
the adsorption process [3].

Even though the dynamic characteristics of the adsorption pro-
cess is very complicated, a number of attempts in developing an
experimental-based optimization methodology may help to pro-
vide a better understanding of the process in terms of the effects
of independent variables and their interactions on the dependent
variable. However, Liu et al. [12] have stated that carrying out
experiments with every possible factorial combination of the test
variables is impractical because of a large number of experiments
required. Hence, response surface modeling (RSM) can be a useful
approach for studying the effects of several factors influencing the
responses by varying them simultaneously and performing a lim-
ited number of experiments [ 13]. Unlike conventional optimization,
suchlike statistical optimization methods can take into account the
interactions of variables in generating process responses [14]. Sim-
ilarly, Guo et al. [15] have reported that the statistical methods are
believed to be effective and powerful approach for screening key
factors rapidly from a multivariable system for the optimization of
a particular process.

Since, many parameters may be responsible for the adsorption
of Pb(Il) ions from aqueous solution, it is important to select a
suitable experimentation technique which will evaluate the effects
of important parameters along with possible interactions, with
minimum number of experiments, as suggested by Bhunia and
Ghangrekar [16]. For this purpose, statistical design of experiments
have been widely reported for the process characterization, opti-
mization and modeling in recent years [15,17-22]. Although the
experimental design technique has been widely studied by many
researchers as an established and promising method for optimiza-
tion and formulation of various types of processes, however, there
are no systematic papers in the literature specifically devoted to a
study of the response surface modeling of Pb(II) removal from aque-
ous solution by P. vera L. using an experimental design technique.
Therefore, clarification of the place of Pb(II) adsorption by P. vera L.
in the scheme of experimental design methodology can be consid-
ered as a particular field of investigation to develop a continuous
control strategy, as well as to achieve an optimum Pb(II) removal.

Based on the above-mentioned facts, the specific objectives of
this study were: (1) to apply a three factor, three-level Box-Behnken
experimental design combining with RSM and quadratic program-
ming (QP) for maximizing Pb(II) removal from aqueous solution by
P. vera L.; (2) to examine the effects of three independent variables
(initial pH of solution, initial concentration of Pb(II) ions, and con-
tact time) and their interactions on the Pb(II) removal efficiency;
and (3) to verify the validity of the proposed model by several addi-
tional batch experiments conducted in the experimental area of the
Box-Behnken design.

2. Materials and methods
2.1. Adsorbent preparation

Antep pistachio (P. vera L.) shells used in the batch experiments
were obtained from lands near to Zohrecik Village of Gaziantep
city in the southeastern part of Turkey. Because Pb(II) concentra-
tion in the air may affect the Pb(II) amount in the adsorbent, Pb(II)
analysis was first in raw pistachio shells prior to determining of
Pb(II) ions concentration of aqueous solutions. Our previous results
indicated that there was no detectable lead levels present in raw

pistachio shells to have an effect on the experimental data [3].
This was attributed to the fact that the lands near to Zohrecik Vil-
lage, where the pistachio shells were collected, are quite away from
urban freeways, as well as from industrial areas [3]. Elemental anal-
ysis was performed with an elemental analyzer (EA 1108, Fisons
Instruments). The elemental composition of used pistachio shells
(in wt.%) was moisture - 4.22, ash - 0.2, carbon - 47.83, hydro-
gen — 5.32, nitrogen - 0.34, total sulfur - 0.19, oxygen - 41.9. True
density and surface area of pistachio shells were determined as
770kg/m3 and 0.41 m?/g, respectively [3]. Prior to batch adsorp-
tion tests, the shells were washed with distilled water to remove
soluble and coloured components, and then dried in an oven (Nuve
FN 500) at 80°C for 24 h. The dried pistachio shells were sieved
through a 1 mm sieve (Endecotts Ltd.) and stored in polythene bags
for further shake flask studies.

2.2. Shake flask studies

A stock solution of 1000 ppm of Pb(Il) was first prepared by
dissolving analytical grade Pb(NO3),-6H,0 (Merck Chemical Corp.)
in distilled water. Then, synthetic wastewater samples were pre-
pared to give Pb(II) concentrations ranging between 5 and 50 ppm
by diluting appropriate amounts of Pb(NO3),-6H,0 stock solution
with distilled water for batch adsorption experiments. From the
physical point of view, experimental ranges of the initial pH of
the solution and contact time were chosen between 2.0-5.5, and
5-120 min, respectively. The selected ranges of the present inde-
pendent variables were considered based on our previous findings
[3]. Series of lab-scale shake flask studies were carried out to deter-
mine the effects of initial pH (pHp), initial concentration of Pb(II)
ions (Cp) and contact time (tc) on the Pb(Il) removal efficiency. A
known amount of the dried adsorbent (1 g) was added into 250 mL
glass flasks with 200 mL solution giving a liquid (solution)-solid
(adsorbent) ratio of 200. The flasks were then placed in an orbital
shaker (Gallenkamp Orbital Incubator Shaker) and agitated up to a
total contact time of 120 min at a fixed agitation speed of 250 rpm
at an ambient temperature of 30 °C. Samples were taken at prede-
termined time intervals, and then separated by centrifugation prior
to any analysis done.

2.3. Box-Behnken experimental design and optimization by RSM

The optimum conditions for maximizing the adsorption of Pb(II)
by P. vera L. were determined by means of a three factor, three-
level Box-Behnken experimental design combining with response
surface modeling and quadratic programming. RSM consists of a
group of empirical techniques devoted to the evaluation of relation-
ships existing between a cluster of controlled experimental factors
and measured responses according to one or more selected cri-
teria [23,24]. In the first step of RSM, a suitable approximation is
introduced to find true relationship between the dependent vari-
able (response) and the set of independent variables (factors). If
knowledge concerning the shape of true response surface is insuf-
ficient, the preliminary model (generally a first-order model) is
upgraded by adding high-order terms to it [23]. In the next step,
the behaviour of the system is explained by the following quadratic
equation [13,23,24]:

k k Kok
Y =P+ Zﬁixi + Z/giisz + ZZﬁy‘XfXj +e (1)
i1 i1

i=1 j=1

where Y is the process response or output (dependent variable), k
is the number of the patterns, i and j are the index numbers for
pattern, B is the free or offset term called intercept term, x1, X2,. . .,
X are the coded independent variables, §; is the first-order (linear)
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Table 1
Experimental range and levels of independent variables.

Variables Range and levels
Low level Center High level AX;?
(-1) level (0) (+1)
Initial pH of solution 2.0 3.75 5.5 1.75
(pHo), X1
Initial concentration of 5.0 27.5 50 225
Pb(II) ions (Cp), X2
(ppm)
Contact time (t¢c), X3 5.0 62.5 120 57.5
(min)

a Step change values.

main effect, B;; is the quadratic (squared) effect, 8;; is the interac-
tion effect, and ¢ is the random error or allows for discrepancies or
uncertainties between predicted and measured values. In develop-
ing Eq. (1), the natural (uncoded) independent variables (X7, X»,. . .,
X,.)are coded according to the following transformation [13,23-25]:

xi(X; — Xo)/ AX; (2)

where x; is dimensionless coded value of the ith independent vari-
able, X; is the uncoded value of the ith independent variable, Xj is
the uncoded ith independent variable at the center point, and AX;
is the step change value.

For this study, the effects of initial pH of solution (pHyg, X1 ), ini-
tial concentration of Pb(Il) ions (Cyp, X2), and contact time (tc, x3)
were investigated. Each of independent variables was consecutively
coded as x1, X2 and x3 at three levels: —1, 0 and 1. The experimental
range and levels of independent variables considered in this study
are presented in Table 1. The central values chosen for the exper-
imental design were pHg =3.75, Cy=27.5 ppm and tc=62.5min in
uncoded form.

To best determine the effect of various operating parameters
such as initial pH of solution, initial concentration of Pb(II) ions,
and contact time, requires an organized testing method. Tests that
produce several combinations and magnitudes of variables are
necessary, but to produce all possible combinations of variables
and ranges would be a tremendous task. Therefore, to minimize
the number of tests while producing a response surface with sta-
tistical meaning, several types of experimental designs (such as
Plackett-Burmann design, 23 factorial design, etc.) including var-
ious range and levels of independent variables were first tested
to obtain the highest correlation between the measured data and
predicted values. For the present data, Box-Behnken experimental

Table 2

design was found to be more suitable than other tested designs.
This may be attributed to the characteristics of the performance
index, as well as to the complexity of the input vector used in this
study.

The advantages of Box-Behnken designs include the fact that
they are all spherical designs and require factors to be run at only
three levels. The designs are also rotatable or nearly rotatable. Some
of these designs also provide orthogonal blocking. Thus, if there is
a need to separate runs into blocks for the Box-Behnken design,
then designs are available that allow blocks to be used in such a
way that the estimation of the regression parameters for the fac-
tor effects are not affected by the blocks. In other words, in these
designs the block effects are orthogonal to the other factor effects.
Yet another advantage of these designs is that there are no runs
where all factors are at either the +1 or —1 levels. In all, 17 batch
experiments were conducted in triplicate, and the average values
of Pb(II) removals were tabulated, as given in Table 2. As seen in
Table 2, the design had only 17 experimental runs, instead of having
27 experimental points if the run was done in 33 complete facto-
rial design, as similarly reported by others [17,26]. Therefore, it can
be noted that a number of additional experiments as well as time-
consuming and laborious laboratory studies were eliminated in this
study by selecting the Box-Behnken experimental design, instead
of complete factorial design. Consequently, a three factor, three-
level Box-Behnken experimental design combining with RSM was
selected for maximizing Pb(II) removal from aqueous solution by P.
vera L.

2.4. Analytical procedure

The surface area of the pistachio shells was determined by sin-
gle point Brunauer, Emmett and Teller (BET) N, sorption procedure.
Elemental analysis was performed with an elemental analyzer (EA
1108, Fisons Instruments). True density of pistachio shells was
determined as outlined in our previous work [3]. Pb(II) analysis was
done in raw pistachio shells according to EPA Method 3010 (acid
digestion of extracts for total recoverable or dissolved metal anal-
ysis by FLAA or ICP spectroscopy). The distilled water used in the
experiments was supplied from a TKA-GenPure water purification
system (Niederelbert, Germany). The pH of synthetic samples was
adjusted by the addition of 1N NaOH and 1N HCI solutions using
a pH meter (WTW Multiline P4 model). Pb(Il) ions concentrations
of aqueous phases were analyzed by atomic absorption spectro-
metric procedure using a flame atomic absorption spectrometer
(SpectrAA 220 Fast Sequential Atomic Absorption Spectrometer,

Box-Behnken design matrix with three independent variables expressed in coded and natural units.

Batch no. Initial pH of solution (pHop) Initial concentration of Pb(II) ions (Cp) (ppm) Contact time (tc) (min) Pb(IT) removal efficiency (%)
X1 (coded) X1 (uncoded) X; (coded) X5 (uncoded) X3 (coded) X3 (uncoded) Y, (observed)?
1 -1 2.0 0 27.5 -1 5.0 26.45
2 0 3.75 0 27.5 0 62.5 92.18
3 +1 5.5 -1 5.0 0 62.5 87.30
4 0 3.75 -1 5.0 -1 5.0 59.60
5 -1 2.0 -1 5.0 0 62.5 41.70
6 +1 5.5 0 27.5 -1 5.0 61.96
7 0 3.75 0 27.5 -1 5.0 71.22
8 0 3.75 +1 50 0 62.5 95.20
9 -1 2.0 +1 50 0 62.5 53.50
10 0 3.75 +1 50 +1 120 97.30
11 +1 5.5 +1 50 0 62.5 97.11
12 -1 2.0 0 27.5 1 120 51.20
13 0 3.75 +1 50 -1 5.0 90.10
14 0 3.75 0 27.5 +1 120 94.62
15 0 3.75 -1 5.0 +1 120 89.70
16 0 3.75 -1 5.0 0 62.5 89.10
17 +1 5.5 0 27.5 +1 120 93.73

2Y, indicates the average Pb(II) removal efficiency of triplicate experiments (n=3).
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Table 3
Analysis of variance (ANOVA) of the response surface model for the prediction of Pb(Il) removal efficiency.
Factors (coded) Statistics?

SsP dft MSS9 MSS = SS/df, MSSg = SSg/df Fvalue F, = MSS/MSSg Probability (p)>F
Model 7987.214 9 887.468 47.31 0.000020¢°
X1 3496.570 1 3496.570 186.40 0.000003¢
x2 2128.834 1 2128.834 113.49 0.000014¢
X2 433.096 1 433.096 23.09 0.001955°
x2 7.736 1 7.736 0.41 0.541204
X3 1374.053 1 1374.053 73.25 0.000059¢
x2 252.955 1 252.955 13.48 0.007941¢
X1X2 0.990 1 0.990 0.05 0.824868
X1X3 12.320 1 12.320 0.66 0.444346
X2X3 131.103 1 131.103 6.99 0.033246¢°
Error SSg =131.310 7 MSSE = 18.759
Total 8118.524 16

2 E is the subscript indicating the error.

b Sum of squares.

¢ Degrees of freedom.

d Mean sum of squares.

¢ p values <0.05 were considered to be significant.

Varian Inc.) with an air-acetylene flame and a hollow cathode lamp
[27].

2.5. Statistical analysis

Each experiment was performed in triplicate and repeated at
least three times to observe the reproducibility. STATISTICA (Trial
version 8.0, StatSoft Inc., USA) software package was used for
regression and graphical analyses of the data obtained. In all calcu-
lations, spreadsheets of Microsoft Excel® 2000 were used as ODBC
(Open Database Connectivity) data source running under Windows.

The significance of independent variables and their interac-
tions were tested by means of the analysis of variance (ANOVA).
An alpha («) level of 0.05 was used to determine the statistical
significance in all analyses. The standardized effects of the inde-
pendent variables and their interactions on the dependent variable
were also investigated by preparing a Pareto chart. Results were
assessed with various descriptive statistics such as t ratio, p value,
Fvalue, degrees of freedom (df), coefficient of variation (CV), deter-
mination coefficient (R?), adjusted determination coefficient (R2),
correlation coefficient (R), Durbin-Watson (DW) statistic, sum of
squares (SS), mean sum of squares (MSS), Mallow’s C, statistic
and chi-square ( x2) test to reflect the statistical significance of the
quadratic model. The second-order polynominal coefficients and
some descriptive statistics were also analyzed by using DataFit®
scientific software (version 8.1.69, Copyright® 1995-2005 Oak-
dale Engineering) for the verification of the obtained results. The
tabulated value of the F-statistic corresponding to ny (numer-
ator=df) and np (denominator=n—df+1) was obtained at the
desired probability level (i.e.,  =0.05 or 95% confidence) by using
an online statistical calculator (by Petr Kuzmic from BioKin, Ltd.,
USA). Similarly, the tabulated value of the x? was determined by
using another online statistical calculator (by Webster West from
Texas A&M University, USA). The quadratic regression equation was
solved by a LOQO/AMPL optimization algorithm (designed by the
third author) to obtain the global points for maximizing the Pb(II)
removal efficiency. For the validation of the regression model, a
non-parametric Mann-Whitney (or Wilcoxon rank-sum) U-test and
a two-sample (unpaired) t-test were performed to evaluate the
relationship between the additional experimental data and the pre-
dicted responses. An online statistical calculator (by Richard Lowry
from Vassar College, USA) was used to calculate two-tailed p values
for the z score and the t value obtained from the Mann-Whitney
U-test and the unpaired t-test, respectively. The critical t value for

the given values of df and o was obtained by using another online
statistical calculator (by David W. Stockburger from Missouri State
University, USA). The validation statistics were also checked by
using StatsDirect (Trial version 2.7.2, Copyright® 1990-2008 Stats-
Direct Ltd.) statistical software package for the verification of the
obtained results.

3. Results and discussion

3.1. Determination of the regression model and statistical
evaluation

By applying multiple regression analysis on the design matrix
and the responses given in Table 2, the following second-order poly-
nomial equation in coded form was established to explain the Pb(II)
removal efficiency:

Y = 91.6039 + 20.9063x; — 23.7018x2 + 6.581x, + 1.6058x2
+11.722x3-9.1825x3—0.4975x X5+ 1.755X1 X3—5.725XX3
(3)

where Y is the predicted Pb(II) removal efficiency, X1, X, and x3 are
the coded terms for three independent test variables, pHg, Cp and tc,
respectively. The optimum values of the selected test variables were
obtained by solving the Eq. (3) and also by analysing the response
surface contour plots. Sen and Swaminathan [25] have reported
that the analysis of variance is essential to test the significance of
the model. Therefore, the ANOVA was conducted to test the signif-
icance of the fit of the second-order polynomial equation for the
experimental data as given in Table 3.

As seen in Table 3, the ANOVA of the regression model (Eq.
(3)) showed that the quadratic model was highly significant, as
was evident from the Fisher's F-test (Fyoqe1 =47.31) with a very
low probability value (Pp,o4e; > F=0.000020), as suggested by Liu et
al. [12]. Furthermore, the calculated F value (S2/S2 = F., = 47.31)
was found to be greater than the tabulated F value (Fy gf(n_dfs1) =
Fo05.97 = S2/S2 = Fiap, = 3.68) at the 5% level, indicating that the
computed Fisher’s variance ratio at this level was large enough to
justify a very high degree of adequacy of the quadratic model and
also to indicate that treatment combinations are highly significant,
as similarly reported by others [12,25]. Since F,; > Fyap (47.31 > 3.68),
the Fisher’s F-test concluded with 95% certainty that the regres-
sion model explained a significant amount of the variation in the
dependent variable.
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Table 4

Detailed descriptive statistics of the regression analysis for the entire quadratic model.

555

Descriptive statistics Calculation

Regression results

n
Sum of residuals g (Yo = Yp) 1.599 x 109
i=1
n
Average residual 1 E (Yo —Yp) 9.412 x 10-12
i=1
n
Residual or error sum of squares (absolute) SSg = E (Yo — Yp)2 131.310
i=1
n
Residual or error sum of squares (relative) (SSe)g = E [(Yo-Yp )z/aiz] 131.310
i=1
n
Error variance of the estimate (MSSg) == E (Yo — Yp)*/(n —p) = SSe/(n - p) 18.759
i=1
n
Standard error of the estimate (S.) EISEE E (Yo—Yp )2/(11 —p)=+/SSe/(n—p) 4.3311
i=1
n
E (Ypfyp)z
Determination coefficient (R?) R?= — =l o = ss,sesgriisE 0.98383
E (rp—Tp)+ E (Yo-Yp)?
i=1 i=1
n
E Yp—¥p)®
Correlation coefficient (R) R= REEN = - 0.99190
E (Ypfg'p)2+ E (YO*Yp)Z
i=1 i=1
Adjusted determination coefficient (R2) RZ=1- (ﬁ ﬁ) =1- [(1 —R?) (ﬁ)] 0.96303
a a SSt dfg n—k-1 .
Coefficient of variation (CV) CV = (4/MSSg/Y, x 100) 5.698965
n n
Durbin-Watson statistic DW = g (e —ei,])z/ g e;? 1.784483
i=2 i=1
Mallow’s C;, statistic Cp = (SSg/MSSg) +2p—n 9.9902
n
Chi-square (x?) test o= E (0; — E;)* /E; 1.7183

i=1

The goodness of fit of the model was checked by the deter-
mination coefficient (R?). In this case, the value of determination
coefficient (R? =0.9838) indicated that only 1.62% of the total vari-
ations were not explained by the regression model. In addition, the
value of adjusted determination coefficient (R? = 0.9630) was also
very high, showing a high significance of the model, as similarly
reported by others [12,13,24]. Liu et al. [ 12] have reported that the R?
corrects the R? value for the sample size and the number of terms in
the model. If there are many terms in the model and the sample size
is not very large, the RZ may be noticeably smaller than the R?. In our
case, the R? was found to be very close to the R? value. Liu et al. [12]
observed similar phenomenon for the second-order RSM experi-
ments based on a five-level central composite design employed to
explore the effects of various fermentation medium ingredients on
production formation. Moreover, a very high value of the correlation
coefficient (R=0.9919) signified an excellent correlation between
the predicted values (responses) and the experimental results. Fur-
thermore, a very high degree of precision and a good deal of the
reliability of the conducted experiments were indicated by a low
value of the coefficient of variation (CV =5.699%), as suggested by
others [13,25].

Dawson and Martinez-Dawson [28] have reported that Mallow’s
Cp statistic can be used to determine how many terms can be omit-
ted from the response surface model. For a response surface model
including all terms, Cp =p, where p is the number of parameters
or variables in the regression model including the intercept term.
For response surface models with omitted terms, C, ~ p indicates a
good model with little bias, and Cp < p indicates a very good predic-
tion model. The goal is to remove terms from the response surface
model until a minimum Cp value near p is obtained. If G, > p, this
indicates that too many terms have been removed or some remain-
ing terms are not necessary [28]. In our case, Mallow’s G, statistic
(Cp=9.9902) indicated the third condition (Cp < p and p=10 includ-
ing Bo, B1.- - -» P13, B23), showing a very good prediction model.

The Durbin-Watson statistic is another value that shows
whether autocorrelation, or correlation between errors, is present
in a model [29]. The range of DW statistic is between 0 and 4, and is
used for testing the linear association between adjacent residuals
[30]. The DW values below 2 can indicate positive autocorrelation
and values above 2 can indicate negative autocorrelation [29].
Hewings et al. [30] have reported that for all estimations, analysis
was performed to be sure that the DW value would be as close as
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Table 5
Observed responses and predicted values with residuals.

Batch no. Coded factors Pb(II) removal efficiency (%) Rounded residuals (Y, - Yp) Error (%) Absolute rounded residuals
X1 X2 X3 Observed, Y, (%)? Predicted, Y, (%)
1 -1 0 -1 26.45 27.85 -1.40 -5.30 1.40
2 0 1] 0 92.18 91.61 0.57 0.62 0.57
3 +1 -1 0 87.30 84.34 2.96 3.40 2.96
4 0 -1 -1 59.60 60.00 —0.40 -0.68 0.40
5 -1 -1 0 41.70 41.53 0.17 0.41 0.17
6 +1 0 -1 61.96 66.15 -4.19 -6.77 4.19
7 0 0 -1 71.22 70.70 0.52 0.72 0.52
8 0 +1 0 95.20 99.80 —4.60 -4.83 4.60
9 -1 +1 0 53.50 55.69 -2.19 —4.08 2.19
10 0 +1 +1 97.30 96.61 0.69 0.71 0.69
11 +1 +1 0 97.11 96.50 0.61 0.63 0.61
12 -1 1] 1 51.20 47.79 341 6.67 341
13 0 +1 -1 90.10 84.62 5.48 6.09 5.48
14 0 0 +1 94.62 94.15 0.47 0.50 0.47
15 0 -1 +1 89.70 94.90 -5.20 -5.80 5.20
16 0 -1 0 89.10 86.63 2.47 2.77 2.47
17 +1 0 +1 93.73 93.11 0.62 0.66 0.62

2 Y, indicates the average Pb(II) removal efficiency of triplicate experiments (n=3).

possible to 2. If the DW value is typically around 2, this implies a
good fit of the model. In our case, the DW statistic (DW=1.784)
was determined to be very close to 2, indicating the goodness of
fit of the model.

The chi-square (x?2) test was also carried out to check whether
there was a significant difference between the expected responses
and the observed data. The calculated chi-square value (Xféll =
1.7183) was found to be less than the tabulated chi-square value
(Xi,(n—l) = X$.05.16 = Xiap = 26.296), indicating that there was no
statistically significant difference between the observed data and
the expected responses. Since xZ, < xZ, (1.7183<26.296), the
alternative hypothesis (H;) was rejected in favor of the null hypoth-
esis (Hg). The x2 test concluded with 95% certainty that the
quadratic model provided a satisfactory fit to the experimental
data. Detailed definitions regarding the above-mentioned descrip-
tive statistics are presented in Table 4.

Liu et al. [12] have reported that checking the adequacy of the
model needs all of the information on lack of fit, which is con-
tained in the residuals. The normal (percentage) probability plot of
the residuals is an important diagnostic tool to detect and explain
the systematic departures from the assumptions that errors are
normally distributed and are independent of each other and that
the error variances are homogeneous. Therefore, a plot of normal
probability of the residuals is depicted in Fig. 1. As seen in Fig. 1,
the normal probability of residuals indicates almost no serious
violation of the assumptions underlying the analyses. By display-
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Fig. 1. The normal probability of the raw residuals.

ing a satisfactory normal distribution, it confirmed the normality
assumptions made earlier and the independence of the residuals,
as reported by Liu et al. [12]. In addition, the comparison of the
residuals with the error variance (S2 or MSSg = 18.759) showed that
none of the individual residual exceeded twice the square root of
the residual variance, as suggested by Sen and Swaminathan [25].

Table 5 shows the observed and predicted values with raw and
absolute residuals, as well as with percent error of responses for
all the batches. As mentioned above, the high values of R2, R% and
R indicated that the quadratic equation was capable of represent-
ing the system under the given experimental domain. This is also
evident from the fact that the parity plot depicted in Fig. 2 shows
a satisfactory correlation between the predicted and observed val-
ues of Pb(II) removal efficiency. As seen in Fig. 2, the points cluster
around the diagonal line indicates a good fit of the model, since the
deviation between the experimental and predicted values was less,
as similarly reported by Imandi et al. [31].

3.2. Effects of model components and their interactions on Pb(II)
removal efficiency

The significance each coefficient was determined by Student’s
t-test and p values, which are listed in Table 6. The t value repre-

100
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Fig. 2. Parity plot showing the correlation between the experimental and predicted
values.
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Table 6

Multiple regression results and significance of the components for the quadratic model.

Factor (coded) Parameter Coefficient Effect SE? tratiot = (Efsf%t) p value SS¢ (PC, %)4 PC = Zs:sss x 100
Intercept Bo 91.6089

X1 B 20.9063 41.8125 3.062559 13.6528 0.000003P 3496.570 44.61
xf Bu —23.7018 —47.4036 4.449795 —10.6530 0.000014° 2128.834 27.16
X2 B 6.5810 13.1620 2.739236 4.8050 0.001955P 433.096 5.53
x2 B2z 1.6058 3.2117 5.001138 0.6422 0.541204 7.736 0.10
X3 B3 11.7220 23.4440 2.739236 8.5586 0.000059° 1374.053 17.53
x§ B33 -9.1825 —18.3650 5.001138 -3.6722 0.007941° 252.955 3.23
X1X2 B2 —0.4975 —0.9950 4.331113 -0.2297 0.824868 0.990 0.01
X1X3 Bz 1.7550 3.5100 4.331113 0.8104 0.444346 12.320 0.16
X2X3 Bas —5.7250 —11.4500 4.331113 —2.6437 0.033246" 131.130 1.67

2 Standard error.

b p values <0.05 were considered to be significant.
¢ Sum of squares.

d Percentage contribution (%).

sents the ratio of the estimated parameter effect to the estimated
parameter standard deviation. Moreover, the p value is used as a
tool to check the significance of each of the coefficients. The larger
the magnitude of the t value and the smaller the p value, the more
significant is the corresponding parameter in the regression model
[32]. Results showed that the first-order main effects of initial pH
of solution (pHy, X1 ), initial concentration of Pb(II) ions (Cyp, X2 ), and
contact time (tc, x3) were found to be more significant than their
respective quadratic effects (x2,x3, andx2), as was evident from
their respective t ratios and p values (Table 6). These values suggest
that the initial pH of the solution, initial concentration of Pb(II) ions
and contact time have a direct relationship on the Pb(Il) removal
efficiency. Can et al. [24] observed similar phenomenon for pH and
biomass concentration considered in a response surface optimiza-
tion based on a 23 full-factorial central composite design conducted
to optimize Ni(Il) removal from aqueous solution by P. slyvestris.
As seen in Tables 3 and 6, the most significant component of the
regression model was found as the initial pH of solution (x; ) for the
present application (t=13.6528, p=0.000003, F=186.40). Among
all model components, the interaction between x; and x, demon-
strated the lowest effect on the Pb(II) removal efficiency (t=0.2297,
p=0.8249, F=0.05). The quadratic terms of x4 and x% were also con-
siderably important (p=0.000014 and p=0.007941, respectively),
except the quadratic term ofx% (p=0.5412). From the physicochem-
ical point of view, the effect of initial pH, as well as the effects of
initial concentration of Pb(II) ions and contact time on the adsorp-
tion efficiency were discussed in detail in our previous work [3].

The Pb(II) removals measured for the different batches showed
a wide variation ranging from a minimum of 26.45% to a maximum
of 97.30% (Table 5). Results clearly indicated that the Pb(II) removal
efficiency was strongly affected by the variables selected for the
study. This was also reflected by the wide range of values for coef-
ficients of the terms of Eq. (3). The standardized effects of the inde-
pendent variables and their interactions on the dependent variable
were investigated by preparing a Pareto chart (Fig. 3). The length of
each bar in the chart indicates the standardized effect of that fac-
tor on the response [26]. The fact that the bar for x;x3, x%, and x1x;
remained inside the reference line in Fig. 3, and the smaller coeffi-
cients for these terms compared to other terms in Eq. (3), indicated
that these terms contributed the least in prediction of the Pb(II)
removal efficiency. The negative coefficients for the model compo-
nents (x%,x%,xp@ and x1x; ) indicated an unfavorable or antagonistic
effect on the Pb(II) removal efficiency, while the positive coeffi-
cients for the model components (X7, X2, X3, X1X3, x%) showed a
favorable or synergistic effect on the Pb(Il) removal efficiency.

In the ANOVA, the sum of squares for each individual model com-
ponent was defined, as given in Table 3. Based on the sum of squares
obtained from the ANOVA, the percentage of contributions (PC) for

each individual term were calculated and tabulated in Table 6. As
seen in Table 6, the initial pH of solution (x;) showed the high-
est level of significance with a contribution of 44.61% as compared
to other components. As similarly done by Meng et al. [33], the
final part of the ANOVA was finished in the same way to obtain the
total PC values for the possible first-order, quadratic and interaction
terms according to the following equations, respectively:

zn:ssi
i=1

TPC; = ——— x 100 (4)
D ssi+SSii+5s;
i=1 i=1
n
> s
TPCjj = —— " x 100 (5)
ZZssi +SS;i +SS;
i=1 j=1
n n
>SSy
TPC; = ——— =1 =1 x 100 (6)
ZZSS" +SSj; + SS;j
i=1 j=1
X1 13.6528 4
8 .2
§ Xi
s
g
g Xz
3 x;
€ X x
o 273
g XX,
T 2 1
S X 0.6421971
2
c \
X, X, -0.229738

p=0.05
Standardized effect estimate (absolute value)

Fig. 3. Pareto chart showing the standardized effect of independent variables and
their interaction on the Pb(II) removal efficiency.
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Fig. 4. A detailed schematic showing the percentage contributions of components.

where TPC;, TPC;;, and TPC;; are the total percentage contributions
(TPC) of first-order, quadratic and interaction terms, respectively.
Similarly, SS;, SS;;, and SS;; are the computed sum of squares for
first-order, quadratic and interaction terms, respectively. A detailed
schematic showing the percentage contributions of components
is depicted in Fig. 4. As seen in Fig. 4, results indicated that the
TPC; of first-order terms demonstrated the highest level of signifi-
cance with a total contribution of 67.67% as compared to other TPC
values. This was followed by the TPC;; of quadratic terms with a
total contribution of 30.49%. Among the calculated TPC values, the
TPC;; of interaction terms showed the lowest level of significance
with a total contribution of 1.84%, indicating that the interaction
components did not show a large effect in prediction of the Pb(II)
removal efficiency. Hence, TPC values also prove that the first-order

independent variables have a direct relationship on the dependent
variable as mentioned above.

3.3. Three-dimensional (3D) response surfaces and contour plots

Adinarayana and Ellaiah [13] have reported that three-
dimensional (3D) response surface plots as a function of two factors,
maintaining all other factors at fixed levels are more helpful in
understanding both the main and the interaction effects of these
two factors. In addition, 3D response surfaces and their correspond-
ing contour plots can facilitate the straightforward examination of
the effects of the experimental variables on the responses [34].
Therefore, in order to gain a better understanding of the effects
of the independent variables and their interactions on the depen-
dentvariable, 3D response surface plots for the measured responses
were formed based on the model equation (Eq. (3)) in this study.
The relationship between the dependent and independent vari-
ables was further elucidated by constructing contour plots. Since

the regression model has three independent variables, one variable
was held at constant at the center level (for the coded form: x; =0
or for the uncoded form: X;=Xg) for each plot, therefore, a total
of three response 3D plots and three corresponding contour plots
were produced for responses. Figs. 5 and 6 show the 3D response
surfaces and the corresponding contour plots as the functions of
two variables at the center level of other variables, respectively. The
nonlinear nature of all 3D response surfaces and the respective con-
tour plots demonstrated that there were considerable interactions
between each of the independent variables and the Pb(II) removal
efficiency. Furthermore, it can also be concluded that all the contour
plots for a high value of Pb(II) removals were found to be nonlinear.

This signified that there was no direct linear relationship among
the selected independent variables.

(%) rerow! (nad

(%) ‘e,\owe.l (wad

—
(2]
~

(%) 18 aowsal (Wad

Fig. 5. 3D response surface diagrams showing the effects of the mutual interactions
between two independent variables (other variables were held at their respective
center levels); (a) initial pH of solution (pHp, X1 ) and initial concentration of Pb(II)
ions (Cop, X2 ), (b) initial pH of solution (pHyp, X;) and contact time (tc, X3), (c) initial
concentration of Pb(II) ions (Cy, X2) and contact time (tc, X3).

3.4. Optimization studies for maximizing Pb(II) removal efficiency

For the solution of a particular nonlinear model, each iterative
step of the nonlinear solver returns the best estimate found so far
in the solution process. After each iteration, the merit function is
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Fig. 6. Contour plots exhibiting the interactive effects between two independent
variables (other variables were held at their respective center levels); (a) initial pH
of solution (pHo, X1) and initial concentration of Pb(II) ions (Co, X2), (b) initial pH
of solution (pHo, X1 ) and contact time (tc, X3), (c) initial concentration of Pb(Il) ions
(Co, X2) and contact time (tc, X3).

compared to that from the previous iteration. Since the solver
returns the best estimates reached so far, the newly computed merit
function will either be better (lower) or unchanged. However, when
determining the goodness of fit of the model, a scientific interpre-
tation of the obtained responses is also necessary to see how well
the chosen regression model truly describes the actual behaviour
of the experimental data. This examination should be carried out
as an important task to ensure that the fitted values of any of the
variables are scientifically meaningful or should not violate a possi-
ble physical reality. In some cases, depending on the characteristics
of the data set, some overestimations as well as underestimations
may be observed in the prediction modeling based computational

studies. For a particular efficiency model, the unrealistic overesti-
mations (above 100%) and negative predictions (below 0%) can be
normally set to the 100% and zero in practice, respectively. However,
a number of attempts in developing a proper solution algorithm
representing the extension of the experimental data may help to
recognize possible technical or scientific faults in the planning stage
and also to develop a better understanding of the process. There-
fore, considering the above-mentioned facts, some constraints were
included into the LOQO/AMPL optimization algorithm used for the
solution of the quadratic regression equation, and then the global
points were obtained within the realistic limits.

On the basis of the calculation steps defined for the optimiza-
tion algorithm, the optimal values of the test variables in coded
units were found as x; =0.125, x, =0.707, and x3 =0.107 with the
corresponding Y=99.9%. The natural values were then determined
to be pHp=3.97, Cp=43.4ppm, and tc=68.7 min by substituting
the respective coded values in Eq. (1). The optimal values of coded
factors were also computed for each mutual interaction at the cen-
ter level of other independent variables. The obtained results are
summarized in Table 7.

3.5. Validation of the regression model

To verify the validity of the proposed model, several additional
batch experiments were carried out in the experimental area of the
Box-Behnken design, and each experimental response was com-
pared with the predicted one. As similarly conducted by Caqueret
et al. [35] and Wu et al. [34], these extra experiments were chosen
randomly in the experimental domain. Table 8 shows the valida-
tion results of the model with these experimental points. As seen
in Table 8, Pb(II) removals measured for the additional batch exper-
iments showed a wide variation ranging from a minimum of 36.23%
to a maximum of 98.43%.

A non-parametric Mann-Whitney (or Wilcoxon rank-sum,
WMW) U-test was conducted to examine whether there was
a noticeable difference between the predicted values and the
observed data obtained from the additional experiments. The
Mann-Whitney U-test is the non-parametric equivalent of a pooled
two-sample t-test. The basic procedure of the Mann-Whitney U-
test is to work with the ranked data. Two independent samples are
first combined into one column, and then the values are ranked
from smallest to largest (where 1 =smallest). Finally, they are bro-
ken down into their original samples, and the total rank scores (U) of
each are summed up. On the basis of the test procedure, an expected
score is first determined as follows [36]:

E(U)=ny(N+1)/2 (7)

where E(U) is the expectation of U, ny is the sample size of the
sample being tested, and N is the total sample size (N=n; +ny).
Thereafter, the z score under the normal curve is calculated accord-
ing to the following equation [36]:

7= Umax—E(U) (8)

\/nmna(N+1)/12

where Upax is the maximum total rank score, and n; and n, are the
sample sizes of the independent samples. According to Egs. (7) and
(8), the z score was determined to be 0.3024 for the present val-
idation data. Then, the two-tailed probability associated with the
obtained z score under the normal curve was obtained as p=0.762.
Since the obtained p value was greater than the chosen « level
(0.762 > 0.05), the alternative hypothesis (H;) was rejected in favor
of the null hypothesis (Hg), indicating that there was no statistically
significant difference between the measured data and the predicted
responses.
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Table 8

Values of coded (x;) and natural (X;) independent variables and corresponding output and ranked data for the statistical model validation.

Additional Coded factors Uncoded factors Pb(II) removal efficiency (%) Ranked data for the
batch no. X = (X; — Xo0)/ AX; Mann-Whitney U-test
X1 X2 X3 Xi Xo X3 Observed, Y, (%)? Predicted, Y}, (%) Observed Predicted

1 +1 +1 0.478 5.5 50 90 98.07 98.11 18 19

2 +1 -1 -1 5.5 5 5 59.58 55.95 8 7

3 -1 0.111 -0.304 2 30 45 38.96 44.12 3 4

4 +1 +1 +1 5.5 50 120 98.43 95.07 20 16

5 -1 0.111 —0.739 2 30 20 36.23 35.89 2 1

6 -1 0.111 0.478 2 30 90 48.76 50.17 5 6

7 -0.143 0.111 -0.304 3.5 30 45 89.33 84.75 11 9

8 -0.143 0.111 0.478 3.5 30 90 95.09 91.98 17 13

9 1 0.111 0.478 5.5 30 90 93.75 93.55 15 14
10 1 -1 0.478 5.5 5 90 89.08 91.42 10 12

2 Y, indicates the average Pb(II) removal efficiency of triplicate experiments (n=3).

cant difference between the measured and the predicted values,
as previously found in the Mann-Whitney test. Therefore, both
the non-parametric Mann-Whitney test and the two-sample t-test
concluded with 95% certainty that the proposed quadratic model
provided a satisfactory fit to the additional experimental data, as
also seen in Fig. 7(b).

In this study, the goodness of fit of the regression model was
also checked by the determination coefficient (R2). In this case, the
value of determination coefficient (R? =0.9876) indicated that only
1.24% of the total variations were not explained by the quadratic
model. Furthermore, a very high value of the correlation coeffi-
cient (R=0.9938) signified an excellent correlation between the
predicted values and the experimental findings. Therefore, the
second-order prediction model was finally validated by the statis-
tical analysis of the output data.

Finally, the response of the proposed mathematical model in
terms of adsorption capacity (mg Pb(II)/g) was also compared with
(gmax Obtained from the equilibrium isotherm. Both experimental
results and the model outputs were described by the well-known
Langmuir isotherm model as a function of equilibrium Pb(II)
concentration (Ce) and the corresponding equilibrium adsorp-
tion capacity (ge). Results indicated that the adsorption capacity
obtained from the model response (26.95mg/g) was clearly in
agreement with that of the equilibrium isotherm (26.53 mg/g). Lin-
ear plots of 1/Ce versus 1/ge showed that determination coefficients
(R%) were found to be about 0.997 and 0.98 for the experimen-
tal data and the model outputs, respectively. From the engineering
point of view, the proposed model to describe the Pb(II) adsorption
process was also validated by means of the adsorption capacity in
addition to various descriptive statistics considered in this work.

4. Conclusions

The application of a three factor, three-level Box-Behnken
experimental design combining with RSM and QP based on a
LOQO/AMPL optimization algorithm helped in reaching the global
optimal solution for maximizing Pb(II) removal from aqueous solu-
tion by P. vera L. The proposed mathematical methodology also
provided a critical analysis of the simultaneous interactive effects
of independent variables, such as initial pH of the solution, initial
concentration of Pb(II) ions, and contact time, for better under-
standing of the Pb(II) removal process. The optimum variables were
found to be 3.97 (x; =0.125) for initial pH of the solution, 43.4 ppm
(x2=0.707) for initial concentration of Pb(Il) ions, and 68.7 min
(x3=0.107) for contact time with a predicted Pb(II) removal effi-
ciency of about 100%, which was also higher than any other
removals obtained in the initial 17 experimental tests.

The adequacy of the developed mathematical model was
checked with the various descriptive statistics. Predicted values

obtained using the quadratic model equation were in very good
agreement with the observed values (R?>=0.9838, R2 = 0.9630,
R=0.9919, CV=5.699%, C,=9.9902, DW=1.784). The statistical
results showed that the first-order main effects of the indepen-
dent variables (pHgp, Cp, and tc) were found to be more significant
than their respective quadratic effects, indicating that the selected
variables had a direct relationship on the Pb(II) removal efficiency.
The most significant component of the quadratic model was found
as pHgp=for the present application (t=13.6528, p=0.000003,
F=186.40, TPC; =44.61%). Findings of this study also indicated that
the total percentage contributions of first-order terms demon-
strated the highest level of significance with a total contribution
of 67.67% as compared to the respective TPC values of quadratic
and interaction terms.

Finally, the prediction capability of the proposed model was
verified by additional batch experiments conducted in the exper-
imental scale of the Box-Behnken design. The validation results
clearly confirmed with 95% certainty that a three factor, three-level
Box-Behnken experimental design combining with RSM and QP is
an effective tool for mathematical modeling and factor analysis of
the Pb(II) adsorption process.
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