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a b s t r a c t

A three factor, three-level Box–Behnken experimental design combining with response surface model-
ing (RSM) and quadratic programming (QP) was employed for maximizing Pb(II) removal from aqueous
solution by Antep pistachio (Pistacia vera L.) shells based on 17 different experimental data obtained in a
lab-scale batch study. Three independent variables (initial pH of solution (pH0) ranging from 2.0 to 5.5,
initial concentration of Pb(II) ions (C0) ranging from 5 to 50 ppm, and contact time (tC) ranging from 5
to 120 min) were consecutively coded as x1, x2 and x3 at three levels (−1, 0 and 1), and a second-order
polynomial regression equation was then derived to predict responses. The significance of independent
variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95%
ntep pistachio shells
esponse surface modeling
ox–Behnken experimental design

confidence limits (˛ = 0.05). The standardized effects of the independent variables and their interactions
on the dependent variable were also investigated by preparing a Pareto chart. The optimum values of
the selected variables were obtained by solving the quadratic regression model, as well as by analysing
the response surface contour plots. The optimum coded values of three test variables were computed
as x1 = 0.125, x2 = 0.707, and x3 = 0.107 by using a LOQO/AMPL optimization algorithm. The experimental
conditions at this global point were determined to be pH0 = 3.97, C0 = 43.4 ppm, and tC = 68.7 min, and the

oval e
corresponding Pb(II) rem

. Introduction

With growing urbanization and rapid industrialization, the
roblem of the release of toxic heavy metals into the ecosystem has
een of increasing concern in many parts of the world. Since heavy
etals can significantly contaminate the receiving water bodies

ven in trace amounts, potential risks of heavy metal pollution can-
ot be ignored any longer. Therefore, the removal of heavy metals

rom water and wastewater has recently become the subject of con-
iderable interest due to more strict legislations introduced in many
ountries to control water pollution [1].

Lead has been recognized one of the most hazardous heavy
etals since mining, acid battery manufacturing, metal plating,

rinting, textile, photographic materials, ceramic and glass indus-
ries, explosive manufacturing, and also lead-containing piping
aterial are the main sources of lead contamination [1,2]. The resul-
ant higher concentrations of lead in the ecosystem have substantial
mpacts on the environment and human health. Lead poisoning
auses various severe health problems in vital organs of humans,

∗ Corresponding author. Tel.: +90 212 3835376; fax: +90 212 3835358.
E-mail address: yetilmez@yildiz.edu.tr (K. Yetilmezsoy).

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2009.06.035
fficiency was found to be about 100%.
© 2009 Elsevier B.V. All rights reserved.

such as damage to the kidney, liver, blood composition, nervous
system, reproductive system and retardation in mental function [3].

Because lead is non-biodegradable and tends to bioaccumulate
in cells of the living organisms, stricter environmental require-
ments and urgent treatment solutions are needed for lead removal
from water and wastewater [3,4]. Current methods for lead removal
include precipitation as hydroxide, carbonate and sulfide pre-
cipitates [5], coagulation/flocculation [6], membrane process [7],
electrochemical process [8], ion exchange [9], biosorption [10], and
adsorption techniques [11]. Among these methods, precipitation of
heavy metals as metal hydroxides or sulfides has been practiced
as the prime method of treatment for heavy metals in industrial
wastewater for many years. However, this process may lead to a spe-
cial problem of sludge handling and costly disposal [3]. Although
membrane filtration and electrochemical process are proven tech-
niques, their high costs limit their use in practice. In addition,
activated carbon is regarded as an effective adsorbent for removal
of metal ions from water, however, due to its high cost and loss dur-

ing regeneration, unconventional low-cost adsorbents such as fly
ash, peat, lignite, bagasse pith, wood, saw dust etc. have attracted
the attention of several investigators in recent years [3]. The shell
of Pistacia vera L. used as an adsorbent in both our previous and the
present studies is an agricultural by-product produced in very large

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:yetilmez@yildiz.edu.tr
dx.doi.org/10.1016/j.jhazmat.2009.06.035
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uantities particularly in the southeastern part of Turkey. The main
dvantages of Pb(II) removal by using pistachio shells is that it is in
bundance and easy availability. This makes it a strong choice in the
nvestigation of an economic way of Pb(II) removal. From the eco-
omical point of view, pistachio shells can be used as an alternative
edia to activated carbon, as well as to gain an understanding of

he adsorption process [3].
Even though the dynamic characteristics of the adsorption pro-

ess is very complicated, a number of attempts in developing an
xperimental-based optimization methodology may help to pro-
ide a better understanding of the process in terms of the effects
f independent variables and their interactions on the dependent
ariable. However, Liu et al. [12] have stated that carrying out
xperiments with every possible factorial combination of the test
ariables is impractical because of a large number of experiments
equired. Hence, response surface modeling (RSM) can be a useful
pproach for studying the effects of several factors influencing the
esponses by varying them simultaneously and performing a lim-
ted number of experiments [13]. Unlike conventional optimization,
uchlike statistical optimization methods can take into account the
nteractions of variables in generating process responses [14]. Sim-
larly, Guo et al. [15] have reported that the statistical methods are
elieved to be effective and powerful approach for screening key

actors rapidly from a multivariable system for the optimization of
particular process.

Since, many parameters may be responsible for the adsorption
f Pb(II) ions from aqueous solution, it is important to select a
uitable experimentation technique which will evaluate the effects
f important parameters along with possible interactions, with
inimum number of experiments, as suggested by Bhunia and
hangrekar [16]. For this purpose, statistical design of experiments
ave been widely reported for the process characterization, opti-
ization and modeling in recent years [15,17–22]. Although the

xperimental design technique has been widely studied by many
esearchers as an established and promising method for optimiza-
ion and formulation of various types of processes, however, there
re no systematic papers in the literature specifically devoted to a
tudy of the response surface modeling of Pb(II) removal from aque-
us solution by P. vera L. using an experimental design technique.
herefore, clarification of the place of Pb(II) adsorption by P. vera L.

n the scheme of experimental design methodology can be consid-
red as a particular field of investigation to develop a continuous
ontrol strategy, as well as to achieve an optimum Pb(II) removal.

Based on the above-mentioned facts, the specific objectives of
his study were: (1) to apply a three factor, three-level Box–Behnken
xperimental design combining with RSM and quadratic program-
ing (QP) for maximizing Pb(II) removal from aqueous solution by

. vera L.; (2) to examine the effects of three independent variables
initial pH of solution, initial concentration of Pb(II) ions, and con-
act time) and their interactions on the Pb(II) removal efficiency;
nd (3) to verify the validity of the proposed model by several addi-
ional batch experiments conducted in the experimental area of the
ox–Behnken design.

. Materials and methods

.1. Adsorbent preparation

Antep pistachio (P. vera L.) shells used in the batch experiments
ere obtained from lands near to Zohrecik Village of Gaziantep
ity in the southeastern part of Turkey. Because Pb(II) concentra-
ion in the air may affect the Pb(II) amount in the adsorbent, Pb(II)
nalysis was first in raw pistachio shells prior to determining of
b(II) ions concentration of aqueous solutions. Our previous results

ndicated that there was no detectable lead levels present in raw
us Materials 171 (2009) 551–562

pistachio shells to have an effect on the experimental data [3].
This was attributed to the fact that the lands near to Zohrecik Vil-
lage, where the pistachio shells were collected, are quite away from
urban freeways, as well as from industrial areas [3]. Elemental anal-
ysis was performed with an elemental analyzer (EA 1108, Fisons
Instruments). The elemental composition of used pistachio shells
(in wt.%) was moisture – 4.22, ash – 0.2, carbon – 47.83, hydro-
gen – 5.32, nitrogen – 0.34, total sulfur – 0.19, oxygen – 41.9. True
density and surface area of pistachio shells were determined as
770 kg/m3 and 0.41 m2/g, respectively [3]. Prior to batch adsorp-
tion tests, the shells were washed with distilled water to remove
soluble and coloured components, and then dried in an oven (Nuve
FN 500) at 80 ◦C for 24 h. The dried pistachio shells were sieved
through a 1 mm sieve (Endecotts Ltd.) and stored in polythene bags
for further shake flask studies.

2.2. Shake flask studies

A stock solution of 1000 ppm of Pb(II) was first prepared by
dissolving analytical grade Pb(NO3)2·6H2O (Merck Chemical Corp.)
in distilled water. Then, synthetic wastewater samples were pre-
pared to give Pb(II) concentrations ranging between 5 and 50 ppm
by diluting appropriate amounts of Pb(NO3)2·6H2O stock solution
with distilled water for batch adsorption experiments. From the
physical point of view, experimental ranges of the initial pH of
the solution and contact time were chosen between 2.0–5.5, and
5–120 min, respectively. The selected ranges of the present inde-
pendent variables were considered based on our previous findings
[3]. Series of lab-scale shake flask studies were carried out to deter-
mine the effects of initial pH (pH0), initial concentration of Pb(II)
ions (C0) and contact time (tC) on the Pb(II) removal efficiency. A
known amount of the dried adsorbent (1 g) was added into 250 mL
glass flasks with 200 mL solution giving a liquid (solution)–solid
(adsorbent) ratio of 200. The flasks were then placed in an orbital
shaker (Gallenkamp Orbital Incubator Shaker) and agitated up to a
total contact time of 120 min at a fixed agitation speed of 250 rpm
at an ambient temperature of 30 ◦C. Samples were taken at prede-
termined time intervals, and then separated by centrifugation prior
to any analysis done.

2.3. Box–Behnken experimental design and optimization by RSM

The optimum conditions for maximizing the adsorption of Pb(II)
by P. vera L. were determined by means of a three factor, three-
level Box–Behnken experimental design combining with response
surface modeling and quadratic programming. RSM consists of a
group of empirical techniques devoted to the evaluation of relation-
ships existing between a cluster of controlled experimental factors
and measured responses according to one or more selected cri-
teria [23,24]. In the first step of RSM, a suitable approximation is
introduced to find true relationship between the dependent vari-
able (response) and the set of independent variables (factors). If
knowledge concerning the shape of true response surface is insuf-
ficient, the preliminary model (generally a first-order model) is
upgraded by adding high-order terms to it [23]. In the next step,
the behaviour of the system is explained by the following quadratic
equation [13,23,24]:

Y = ˇ0 +
k∑

i=1

ˇixi +
k∑

i=1

ˇiix
2
i +

k∑
i=1

k∑
j=1

ˇijxixj + ε (1)
where Y is the process response or output (dependent variable), k
is the number of the patterns, i and j are the index numbers for
pattern, ˇ0 is the free or offset term called intercept term, x1, x2,. . .,
xk are the coded independent variables, ˇi is the first-order (linear)
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Table 1
Experimental range and levels of independent variables.

Variables Range and levels

Low level
(−1)

Center
level (0)

High level
(+1)

�Xi
a

Initial pH of solution
(pH0), X1

2.0 3.75 5.5 1.75

Initial concentration of
Pb(II) ions (C0), X2

(ppm)

5.0 27.5 50 22.5
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1

ontact time (tC), X3

(min)
5.0 62.5 120 57.5

a Step change values.

ain effect, ˇii is the quadratic (squared) effect, ˇij is the interac-
ion effect, and � is the random error or allows for discrepancies or
ncertainties between predicted and measured values. In develop-

ng Eq. (1), the natural (uncoded) independent variables (X1, X2,. . .,
k) are coded according to the following transformation [13,23–25]:

i(Xi − X0)/�Xi (2)

here xi is dimensionless coded value of the ith independent vari-
ble, Xi is the uncoded value of the ith independent variable, X0 is
he uncoded ith independent variable at the center point, and �Xi
s the step change value.

For this study, the effects of initial pH of solution (pH0, x1), ini-
ial concentration of Pb(II) ions (C0, x2), and contact time (tC, x3)
ere investigated. Each of independent variables was consecutively

oded as x1, x2 and x3 at three levels: −1, 0 and 1. The experimental
ange and levels of independent variables considered in this study
re presented in Table 1. The central values chosen for the exper-
mental design were pH0 = 3.75, C0 = 27.5 ppm and tC = 62.5 min in
ncoded form.

To best determine the effect of various operating parameters
uch as initial pH of solution, initial concentration of Pb(II) ions,
nd contact time, requires an organized testing method. Tests that
roduce several combinations and magnitudes of variables are
ecessary, but to produce all possible combinations of variables
nd ranges would be a tremendous task. Therefore, to minimize
he number of tests while producing a response surface with sta-

istical meaning, several types of experimental designs (such as
lackett–Burmann design, 23 factorial design, etc.) including var-

ous range and levels of independent variables were first tested
o obtain the highest correlation between the measured data and
redicted values. For the present data, Box–Behnken experimental

able 2
ox–Behnken design matrix with three independent variables expressed in coded and na

atch no. Initial pH of solution (pH0) Initial concentration of Pb(II) ions (C

x1 (coded) X1 (uncoded) x2 (coded) X2 (unc

1 −1 2.0 0 27.5
2 0 3.75 0 27.5
3 +1 5.5 −1 5.0
4 0 3.75 −1 5.0
5 −1 2.0 −1 5.0
6 +1 5.5 0 27.5
7 0 3.75 0 27.5
8 0 3.75 +1 50
9 −1 2.0 +1 50

10 0 3.75 +1 50
11 +1 5.5 +1 50
2 −1 2.0 0 27.5

13 0 3.75 +1 50
14 0 3.75 0 27.5
15 0 3.75 −1 5.0
16 0 3.75 −1 5.0
17 +1 5.5 0 27.5

a Yo indicates the average Pb(II) removal efficiency of triplicate experiments (n = 3).
us Materials 171 (2009) 551–562 553

design was found to be more suitable than other tested designs.
This may be attributed to the characteristics of the performance
index, as well as to the complexity of the input vector used in this
study.

The advantages of Box–Behnken designs include the fact that
they are all spherical designs and require factors to be run at only
three levels. The designs are also rotatable or nearly rotatable. Some
of these designs also provide orthogonal blocking. Thus, if there is
a need to separate runs into blocks for the Box–Behnken design,
then designs are available that allow blocks to be used in such a
way that the estimation of the regression parameters for the fac-
tor effects are not affected by the blocks. In other words, in these
designs the block effects are orthogonal to the other factor effects.
Yet another advantage of these designs is that there are no runs
where all factors are at either the +1 or −1 levels. In all, 17 batch
experiments were conducted in triplicate, and the average values
of Pb(II) removals were tabulated, as given in Table 2. As seen in
Table 2, the design had only 17 experimental runs, instead of having
27 experimental points if the run was done in 33 complete facto-
rial design, as similarly reported by others [17,26]. Therefore, it can
be noted that a number of additional experiments as well as time-
consuming and laborious laboratory studies were eliminated in this
study by selecting the Box–Behnken experimental design, instead
of complete factorial design. Consequently, a three factor, three-
level Box–Behnken experimental design combining with RSM was
selected for maximizing Pb(II) removal from aqueous solution by P.
vera L.

2.4. Analytical procedure

The surface area of the pistachio shells was determined by sin-
gle point Brunauer, Emmett and Teller (BET) N2 sorption procedure.
Elemental analysis was performed with an elemental analyzer (EA
1108, Fisons Instruments). True density of pistachio shells was
determined as outlined in our previous work [3]. Pb(II) analysis was
done in raw pistachio shells according to EPA Method 3010 (acid
digestion of extracts for total recoverable or dissolved metal anal-
ysis by FLAA or ICP spectroscopy). The distilled water used in the
experiments was supplied from a TKA-GenPure water purification
system (Niederelbert, Germany). The pH of synthetic samples was

adjusted by the addition of 1N NaOH and 1N HCl solutions using
a pH meter (WTW Multiline P4 model). Pb(II) ions concentrations
of aqueous phases were analyzed by atomic absorption spectro-
metric procedure using a flame atomic absorption spectrometer
(SpectrAA 220 Fast Sequential Atomic Absorption Spectrometer,

tural units.

0) (ppm) Contact time (tC) (min) Pb(II) removal efficiency (%)

oded) x3 (coded) X3 (uncoded) Yo (observed)a

−1 5.0 26.45
0 62.5 92.18
0 62.5 87.30

−1 5.0 59.60
0 62.5 41.70

−1 5.0 61.96
−1 5.0 71.22

0 62.5 95.20
0 62.5 53.50

+1 120 97.30
0 62.5 97.11
1 120 51.20

−1 5.0 90.10
+1 120 94.62
+1 120 89.70

0 62.5 89.10
+1 120 93.73
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Table 3
Analysis of variance (ANOVA) of the response surface model for the prediction of Pb(II) removal efficiency.

Factors (coded) Statisticsa

SSb dfc MSSd MSS = SS/df, MSSE = SSE/dfE F value Fcal = MSS/MSSE Probability (p) > F

Model 7987.214 9 887.468 47.31 0.000020e

x1 3496.570 1 3496.570 186.40 0.000003e

x2
1 2128.834 1 2128.834 113.49 0.000014e

x2 433.096 1 433.096 23.09 0.001955e

x2
2 7.736 1 7.736 0.41 0.541204

x3 1374.053 1 1374.053 73.25 0.000059e

x2
3 252.955 1 252.955 13.48 0.007941e

x1x2 0.990 1 0.990 0.05 0.824868
x1x3 12.320 1 12.320 0.66 0.444346
x2x3 131.103 1 131.103 6.99 0.033246e

Error SSE = 131.310 7 MSSE = 18.759

Total 8118.524 16

a E is the subscript indicating the error.
b
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Sum of squares.
c Degrees of freedom.
d Mean sum of squares.
e p values <0.05 were considered to be significant.

arian Inc.) with an air–acetylene flame and a hollow cathode lamp
27].

.5. Statistical analysis

Each experiment was performed in triplicate and repeated at
east three times to observe the reproducibility. STATISTICA (Trial
ersion 8.0, StatSoft Inc., USA) software package was used for
egression and graphical analyses of the data obtained. In all calcu-
ations, spreadsheets of Microsoft Excel® 2000 were used as ODBC
Open Database Connectivity) data source running under Windows.

The significance of independent variables and their interac-
ions were tested by means of the analysis of variance (ANOVA).
n alpha (˛) level of 0.05 was used to determine the statistical
ignificance in all analyses. The standardized effects of the inde-
endent variables and their interactions on the dependent variable
ere also investigated by preparing a Pareto chart. Results were

ssessed with various descriptive statistics such as t ratio, p value,
value, degrees of freedom (df), coefficient of variation (CV), deter-
ination coefficient (R2), adjusted determination coefficient (R2

a ),
orrelation coefficient (R), Durbin–Watson (DW) statistic, sum of
quares (SS), mean sum of squares (MSS), Mallow’s Cp statistic
nd chi-square (�2) test to reflect the statistical significance of the
uadratic model. The second-order polynominal coefficients and
ome descriptive statistics were also analyzed by using DataFit®

cientific software (version 8.1.69, Copyright© 1995–2005 Oak-
ale Engineering) for the verification of the obtained results. The
abulated value of the F-statistic corresponding to nN (numer-
tor = df) and nD (denominator = n − df + 1) was obtained at the
esired probability level (i.e., ˛ = 0.05 or 95% confidence) by using
n online statistical calculator (by Petr Kuzmic from BioKin, Ltd.,
SA). Similarly, the tabulated value of the �2 was determined by
sing another online statistical calculator (by Webster West from
exas A&M University, USA). The quadratic regression equation was
olved by a LOQO/AMPL optimization algorithm (designed by the
hird author) to obtain the global points for maximizing the Pb(II)
emoval efficiency. For the validation of the regression model, a
on-parametric Mann–Whitney (or Wilcoxon rank-sum) U-test and
two-sample (unpaired) t-test were performed to evaluate the
elationship between the additional experimental data and the pre-
icted responses. An online statistical calculator (by Richard Lowry

rom Vassar College, USA) was used to calculate two-tailed p values
or the z score and the t value obtained from the Mann–Whitney
-test and the unpaired t-test, respectively. The critical t value for
the given values of df and ˛ was obtained by using another online
statistical calculator (by David W. Stockburger from Missouri State
University, USA). The validation statistics were also checked by
using StatsDirect (Trial version 2.7.2, Copyright© 1990–2008 Stats-
Direct Ltd.) statistical software package for the verification of the
obtained results.

3. Results and discussion

3.1. Determination of the regression model and statistical
evaluation

By applying multiple regression analysis on the design matrix
and the responses given in Table 2, the following second-order poly-
nomial equation in coded form was established to explain the Pb(II)
removal efficiency:

Y = 91.6039 + 20.9063x1 − 23.7018x2
1 + 6.581x2 + 1.6058x2

2

+ 11.722x3−9.1825x2
3−0.4975x1x2+1.755x1x3−5.725x2x3

(3)

where Y is the predicted Pb(II) removal efficiency, x1, x2 and x3 are
the coded terms for three independent test variables, pH0, C0 and tC,
respectively. The optimum values of the selected test variables were
obtained by solving the Eq. (3) and also by analysing the response
surface contour plots. Sen and Swaminathan [25] have reported
that the analysis of variance is essential to test the significance of
the model. Therefore, the ANOVA was conducted to test the signif-
icance of the fit of the second-order polynomial equation for the
experimental data as given in Table 3.

As seen in Table 3, the ANOVA of the regression model (Eq.
(3)) showed that the quadratic model was highly significant, as
was evident from the Fisher’s F-test (Fmodel = 47.31) with a very
low probability value (Pmodel > F = 0.000020), as suggested by Liu et
al. [12]. Furthermore, the calculated F value (S2

r /S2
e = Fcal = 47.31)

was found to be greater than the tabulated F value (F�,df,(n−df+1) =
F0.05,9,7 = S2

r /S2
e = Ftab = 3.68) at the 5% level, indicating that the

computed Fisher’s variance ratio at this level was large enough to
justify a very high degree of adequacy of the quadratic model and

also to indicate that treatment combinations are highly significant,
as similarly reported by others [12,25]. Since Fcal > Ftab (47.31 > 3.68),
the Fisher’s F-test concluded with 95% certainty that the regres-
sion model explained a significant amount of the variation in the
dependent variable.
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Table 4
Detailed descriptive statistics of the regression analysis for the entire quadratic model.

Descriptive statistics Calculation Regression results

Sum of residuals

n∑
i=1

(Yo − Yp) 1.599 × 10−9

Average residual 1
n

n∑
i=1

(Yo − Yp) 9.412 × 10−12

Residual or error sum of squares (absolute) SSE =
n∑

i=1

(Yo − Yp)2 131.310

Residual or error sum of squares (relative) (SSE)R =
n∑

i=1

[(Yo − Yp)2/�2
i

] 131.310

Error variance of the estimate (MSSE) ∂2 = S2
e =

n∑
i=1

(Yo − Yp)2/(n − p) = SSE/(n − p) 18.759

Standard error of the estimate (Se) ∂ = Se =

√
n∑

i=1

(Yo − Yp)2/(n − p) =
√

SSE/(n − p) 4.3311

Determination coefficient (R2) R2 =

n∑
i=1

(Yp−Ȳp)2

n∑
i=1

(Yp−Ȳp)2+

n∑
i=1

(Yo−Yp)2

= SSreg
SSreg+SSE

0.98383

Correlation coefficient (R) R =

√√√√√√√√
n∑

i=1

(Yp−Ȳp)2

n∑
i=1

(Yp−Ȳp)2+

n∑
i=1

(Yo−Yp)2

0.99190

Adjusted determination coefficient (R2
a ) R2

a = 1 −
(

SSE
SST

dfT
dfE

)
= 1 −

[
(1 − R2)

(
n−1

n−k−1

)]
0.96303

Coefficient of variation (CV) CV = (
√

MSSE/Ȳo × 100) 5.698965

Durbin–Watson statistic DW =
n∑

i=2

(ei − ei−1)2/

n∑
i=1

ei
2 1.784483

Mallow’s Cp statistic Cp = (SSE/MSSE) + 2p − n 9.9902

C
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Oi − E

m
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hi-square (�2) test �2
cal

=
∑

i=1

(

The goodness of fit of the model was checked by the deter-
ination coefficient (R2). In this case, the value of determination

oefficient (R2 = 0.9838) indicated that only 1.62% of the total vari-
tions were not explained by the regression model. In addition, the
alue of adjusted determination coefficient (R2

a = 0.9630) was also
ery high, showing a high significance of the model, as similarly
eported by others [12,13,24]. Liu et al. [12] have reported that the R2

a
orrects the R2 value for the sample size and the number of terms in
he model. If there are many terms in the model and the sample size
s not very large, the R2

a may be noticeably smaller than the R2. In our
ase, the R2

a was found to be very close to the R2 value. Liu et al. [12]
bserved similar phenomenon for the second-order RSM experi-
ents based on a five-level central composite design employed to

xplore the effects of various fermentation medium ingredients on
roduction formation. Moreover, a very high value of the correlation
oefficient (R = 0.9919) signified an excellent correlation between

he predicted values (responses) and the experimental results. Fur-
hermore, a very high degree of precision and a good deal of the
eliability of the conducted experiments were indicated by a low
alue of the coefficient of variation (CV = 5.699%), as suggested by
thers [13,25].
i)
2/Ei 1.7183

Dawson and Martinez-Dawson [28] have reported that Mallow’s
Cp statistic can be used to determine how many terms can be omit-
ted from the response surface model. For a response surface model
including all terms, Cp = p, where p is the number of parameters
or variables in the regression model including the intercept term.
For response surface models with omitted terms, Cp ∼ p indicates a
good model with little bias, and Cp ≤ p indicates a very good predic-
tion model. The goal is to remove terms from the response surface
model until a minimum Cp value near p is obtained. If Cp > p, this
indicates that too many terms have been removed or some remain-
ing terms are not necessary [28]. In our case, Mallow’s Cp statistic
(Cp = 9.9902) indicated the third condition (Cp ≤ p and p = 10 includ-
ing ˇ0, ˇ1,. . ., ˇ13, ˇ23), showing a very good prediction model.

The Durbin–Watson statistic is another value that shows
whether autocorrelation, or correlation between errors, is present
in a model [29]. The range of DW statistic is between 0 and 4, and is

used for testing the linear association between adjacent residuals
[30]. The DW values below 2 can indicate positive autocorrelation
and values above 2 can indicate negative autocorrelation [29].
Hewings et al. [30] have reported that for all estimations, analysis
was performed to be sure that the DW value would be as close as
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Table 5
Observed responses and predicted values with residuals.

Batch no. Coded factors Pb(II) removal efficiency (%) Rounded residuals (Yo – Yp) Error (%) Absolute rounded residuals

x1 x2 x3 Observed, Yo (%)a Predicted, Yp (%)

1 −1 0 −1 26.45 27.85 −1.40 −5.30 1.40
2 0 0 0 92.18 91.61 0.57 0.62 0.57
3 +1 −1 0 87.30 84.34 2.96 3.40 2.96
4 0 −1 −1 59.60 60.00 −0.40 −0.68 0.40
5 −1 −1 0 41.70 41.53 0.17 0.41 0.17
6 +1 0 −1 61.96 66.15 −4.19 −6.77 4.19
7 0 0 −1 71.22 70.70 0.52 0.72 0.52
8 0 +1 0 95.20 99.80 −4.60 −4.83 4.60
9 −1 +1 0 53.50 55.69 −2.19 −4.08 2.19

10 0 +1 +1 97.30 96.61 0.69 0.71 0.69
11 +1 +1 0 97.11 96.50 0.61 0.63 0.61
12 −1 0 1 51.20 47.79 3.41 6.67 3.41
13 0 +1 −1 90.10 84.62 5.48 6.09 5.48
14 0 0 +1 94.62 94.15 0.47 0.50 0.47
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3.2. Effects of model components and their interactions on Pb(II)
removal efficiency
15 0 −1 +1 89.70 94.90
16 0 −1 0 89.10 86.63
17 +1 0 +1 93.73 93.11

a Yo indicates the average Pb(II) removal efficiency of triplicate experiments (n = 3

ossible to 2. If the DW value is typically around 2, this implies a
ood fit of the model. In our case, the DW statistic (DW = 1.784)
as determined to be very close to 2, indicating the goodness of
t of the model.

The chi-square (�2) test was also carried out to check whether
here was a significant difference between the expected responses
nd the observed data. The calculated chi-square value (�2

cal =
.7183) was found to be less than the tabulated chi-square value
�2

˛,(n−1) = �2
0.05,16 = �2

tab = 26.296), indicating that there was no
tatistically significant difference between the observed data and
he expected responses. Since �2

cal < �2
tab (1.7183 < 26.296), the

lternative hypothesis (Ha) was rejected in favor of the null hypoth-
sis (H0). The �2 test concluded with 95% certainty that the
uadratic model provided a satisfactory fit to the experimental
ata. Detailed definitions regarding the above-mentioned descrip-
ive statistics are presented in Table 4.

Liu et al. [12] have reported that checking the adequacy of the
odel needs all of the information on lack of fit, which is con-

ained in the residuals. The normal (percentage) probability plot of
he residuals is an important diagnostic tool to detect and explain
he systematic departures from the assumptions that errors are

ormally distributed and are independent of each other and that
he error variances are homogeneous. Therefore, a plot of normal
robability of the residuals is depicted in Fig. 1. As seen in Fig. 1,
he normal probability of residuals indicates almost no serious
iolation of the assumptions underlying the analyses. By display-

Fig. 1. The normal probability of the raw residuals.
−5.20 −5.80 5.20
2.47 2.77 2.47
0.62 0.66 0.62

ing a satisfactory normal distribution, it confirmed the normality
assumptions made earlier and the independence of the residuals,
as reported by Liu et al. [12]. In addition, the comparison of the
residuals with the error variance (S2

e or MSSE = 18.759) showed that
none of the individual residual exceeded twice the square root of
the residual variance, as suggested by Sen and Swaminathan [25].

Table 5 shows the observed and predicted values with raw and
absolute residuals, as well as with percent error of responses for
all the batches. As mentioned above, the high values of R2, R2

a and
R indicated that the quadratic equation was capable of represent-
ing the system under the given experimental domain. This is also
evident from the fact that the parity plot depicted in Fig. 2 shows
a satisfactory correlation between the predicted and observed val-
ues of Pb(II) removal efficiency. As seen in Fig. 2, the points cluster
around the diagonal line indicates a good fit of the model, since the
deviation between the experimental and predicted values was less,
as similarly reported by Imandi et al. [31].
The significance each coefficient was determined by Student’s
t-test and p values, which are listed in Table 6. The t value repre-

Fig. 2. Parity plot showing the correlation between the experimental and predicted
values.
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Table 6
Multiple regression results and significance of the components for the quadratic model.

Factor (coded) Parameter Coefficient Effect SEa t ratio t = (Effect)
SE p value SSc (PC, %)d PC = SS∑

SS
× 100

Intercept ˇ0 91.6089
x1 ˇ1 20.9063 41.8125 3.062559 13.6528 0.000003b 3496.570 44.61
x2

1 ˇ11 −23.7018 −47.4036 4.449795 −10.6530 0.000014b 2128.834 27.16
x2 ˇ2 6.5810 13.1620 2.739236 4.8050 0.001955b 433.096 5.53
x2

2 ˇ22 1.6058 3.2117 5.001138 0.6422 0.541204 7.736 0.10
x3 ˇ3 11.7220 23.4440 2.739236 8.5586 0.000059b 1374.053 17.53
x2

3 ˇ33 −9.1825 −18.3650 5.001138 −3.6722 0.007941b 252.955 3.23
x1x2 ˇ12 −0.4975 −0.9950 4.331113 −0.2297 0.824868 0.990 0.01
x1x3 ˇ13 1.7550 3.5100 4.331113 0.8104 0.444346 12.320 0.16
x2x3 ˇ23 −5.7250 −11.4500 4.331113 −2.6437 0.033246b 131.130 1.67

a Standard error.
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TPCij = i=1 i=1
n∑

i=1

n∑
j=1

SSi + SSii + SSij

× 100 (6)
b p values <0.05 were considered to be significant.
c Sum of squares.
d Percentage contribution (%).

ents the ratio of the estimated parameter effect to the estimated
arameter standard deviation. Moreover, the p value is used as a
ool to check the significance of each of the coefficients. The larger
he magnitude of the t value and the smaller the p value, the more
ignificant is the corresponding parameter in the regression model
32]. Results showed that the first-order main effects of initial pH
f solution (pH0, x1), initial concentration of Pb(II) ions (C0, x2), and
ontact time (tC, x3) were found to be more significant than their
espective quadratic effects (x2

1, x2
2, and x2

3), as was evident from
heir respective t ratios and p values (Table 6). These values suggest
hat the initial pH of the solution, initial concentration of Pb(II) ions
nd contact time have a direct relationship on the Pb(II) removal
fficiency. Can et al. [24] observed similar phenomenon for pH and
iomass concentration considered in a response surface optimiza-
ion based on a 23 full-factorial central composite design conducted
o optimize Ni(II) removal from aqueous solution by P. slyvestris.
s seen in Tables 3 and 6, the most significant component of the

egression model was found as the initial pH of solution (x1) for the
resent application (t = 13.6528, p = 0.000003, F = 186.40). Among
ll model components, the interaction between x1 and x2 demon-
trated the lowest effect on the Pb(II) removal efficiency (t = 0.2297,
= 0.8249, F = 0.05). The quadratic terms of x2

1 and x2
3 were also con-

iderably important (p = 0.000014 and p = 0.007941, respectively),
xcept the quadratic term of x2

2 (p = 0.5412). From the physicochem-
cal point of view, the effect of initial pH, as well as the effects of
nitial concentration of Pb(II) ions and contact time on the adsorp-
ion efficiency were discussed in detail in our previous work [3].

The Pb(II) removals measured for the different batches showed
wide variation ranging from a minimum of 26.45% to a maximum
f 97.30% (Table 5). Results clearly indicated that the Pb(II) removal
fficiency was strongly affected by the variables selected for the
tudy. This was also reflected by the wide range of values for coef-
cients of the terms of Eq. (3). The standardized effects of the inde-
endent variables and their interactions on the dependent variable
ere investigated by preparing a Pareto chart (Fig. 3). The length of

ach bar in the chart indicates the standardized effect of that fac-
or on the response [26]. The fact that the bar for x1x3, x2

2, and x1x2
emained inside the reference line in Fig. 3, and the smaller coeffi-
ients for these terms compared to other terms in Eq. (3), indicated
hat these terms contributed the least in prediction of the Pb(II)
emoval efficiency. The negative coefficients for the model compo-
ents (x2

1, x2
3, x2x3 and x1x2) indicated an unfavorable or antagonistic

ffect on the Pb(II) removal efficiency, while the positive coeffi-

ients for the model components (x1, x2, x3, x1x3, x2

2) showed a
avorable or synergistic effect on the Pb(II) removal efficiency.

In the ANOVA, the sum of squares for each individual model com-
onent was defined, as given in Table 3. Based on the sum of squares
btained from the ANOVA, the percentage of contributions (PC) for
each individual term were calculated and tabulated in Table 6. As
seen in Table 6, the initial pH of solution (x1) showed the high-
est level of significance with a contribution of 44.61% as compared
to other components. As similarly done by Meng et al. [33], the
final part of the ANOVA was finished in the same way to obtain the
total PC values for the possible first-order, quadratic and interaction
terms according to the following equations, respectively:

TPCi =

n∑
i=1

SSi

n∑
i=1

n∑
i=1

SSi + SSii + SSij

× 100 (4)

TPCii =

n∑
i=1

SSii

n∑
i=1

n∑
j=1

SSi + SSii + SSij

× 100 (5)

n∑ n∑
SSij
Fig. 3. Pareto chart showing the standardized effect of independent variables and
their interaction on the Pb(II) removal efficiency.
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Fig. 5. 3D response surface diagrams showing the effects of the mutual interactions
ig. 4. A detailed schematic showing the percentage contributions of components.

here TPCi, TPCii, and TPCij are the total percentage contributions
TPC) of first-order, quadratic and interaction terms, respectively.
imilarly, SSi, SSii, and SSij are the computed sum of squares for
rst-order, quadratic and interaction terms, respectively. A detailed
chematic showing the percentage contributions of components
s depicted in Fig. 4. As seen in Fig. 4, results indicated that the
PCi of first-order terms demonstrated the highest level of signifi-
ance with a total contribution of 67.67% as compared to other TPC
alues. This was followed by the TPCii of quadratic terms with a
otal contribution of 30.49%. Among the calculated TPC values, the
PCij of interaction terms showed the lowest level of significance
ith a total contribution of 1.84%, indicating that the interaction

omponents did not show a large effect in prediction of the Pb(II)
emoval efficiency. Hence, TPC values also prove that the first-order
ndependent variables have a direct relationship on the dependent
ariable as mentioned above.

.3. Three-dimensional (3D) response surfaces and contour plots

Adinarayana and Ellaiah [13] have reported that three-
imensional (3D) response surface plots as a function of two factors,
aintaining all other factors at fixed levels are more helpful in

nderstanding both the main and the interaction effects of these
wo factors. In addition, 3D response surfaces and their correspond-
ng contour plots can facilitate the straightforward examination of
he effects of the experimental variables on the responses [34].
herefore, in order to gain a better understanding of the effects
f the independent variables and their interactions on the depen-
ent variable, 3D response surface plots for the measured responses
ere formed based on the model equation (Eq. (3)) in this study.

he relationship between the dependent and independent vari-
bles was further elucidated by constructing contour plots. Since
he regression model has three independent variables, one variable
as held at constant at the center level (for the coded form: xi = 0

r for the uncoded form: Xi = X0) for each plot, therefore, a total
f three response 3D plots and three corresponding contour plots
ere produced for responses. Figs. 5 and 6 show the 3D response

urfaces and the corresponding contour plots as the functions of
wo variables at the center level of other variables, respectively. The
onlinear nature of all 3D response surfaces and the respective con-
our plots demonstrated that there were considerable interactions

etween each of the independent variables and the Pb(II) removal
fficiency. Furthermore, it can also be concluded that all the contour
lots for a high value of Pb(II) removals were found to be nonlinear.
his signified that there was no direct linear relationship among
he selected independent variables.
between two independent variables (other variables were held at their respective
center levels); (a) initial pH of solution (pH0, X1) and initial concentration of Pb(II)
ions (C0, X2), (b) initial pH of solution (pH0, X1) and contact time (tC, X3), (c) initial
concentration of Pb(II) ions (C0, X2) and contact time (tC, X3).
3.4. Optimization studies for maximizing Pb(II) removal efficiency

For the solution of a particular nonlinear model, each iterative
step of the nonlinear solver returns the best estimate found so far
in the solution process. After each iteration, the merit function is
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Fig. 6. Contour plots exhibiting the interactive effects between two independent
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ariables (other variables were held at their respective center levels); (a) initial pH
f solution (pH0, X1) and initial concentration of Pb(II) ions (C0, X2), (b) initial pH
f solution (pH0, X1) and contact time (tC, X3), (c) initial concentration of Pb(II) ions
C0, X2) and contact time (tC, X3).

ompared to that from the previous iteration. Since the solver
eturns the best estimates reached so far, the newly computed merit
unction will either be better (lower) or unchanged. However, when
etermining the goodness of fit of the model, a scientific interpre-
ation of the obtained responses is also necessary to see how well
he chosen regression model truly describes the actual behaviour
f the experimental data. This examination should be carried out

s an important task to ensure that the fitted values of any of the
ariables are scientifically meaningful or should not violate a possi-
le physical reality. In some cases, depending on the characteristics
f the data set, some overestimations as well as underestimations
ay be observed in the prediction modeling based computational
us Materials 171 (2009) 551–562 559

studies. For a particular efficiency model, the unrealistic overesti-
mations (above 100%) and negative predictions (below 0%) can be
normally set to the 100% and zero in practice, respectively. However,
a number of attempts in developing a proper solution algorithm
representing the extension of the experimental data may help to
recognize possible technical or scientific faults in the planning stage
and also to develop a better understanding of the process. There-
fore, considering the above-mentioned facts, some constraints were
included into the LOQO/AMPL optimization algorithm used for the
solution of the quadratic regression equation, and then the global
points were obtained within the realistic limits.

On the basis of the calculation steps defined for the optimiza-
tion algorithm, the optimal values of the test variables in coded
units were found as x1 = 0.125, x2 = 0.707, and x3 = 0.107 with the
corresponding Y = 99.9%. The natural values were then determined
to be pH0 = 3.97, C0 = 43.4 ppm, and tC = 68.7 min by substituting
the respective coded values in Eq. (1). The optimal values of coded
factors were also computed for each mutual interaction at the cen-
ter level of other independent variables. The obtained results are
summarized in Table 7.

3.5. Validation of the regression model

To verify the validity of the proposed model, several additional
batch experiments were carried out in the experimental area of the
Box–Behnken design, and each experimental response was com-
pared with the predicted one. As similarly conducted by Caqueret
et al. [35] and Wu et al. [34], these extra experiments were chosen
randomly in the experimental domain. Table 8 shows the valida-
tion results of the model with these experimental points. As seen
in Table 8, Pb(II) removals measured for the additional batch exper-
iments showed a wide variation ranging from a minimum of 36.23%
to a maximum of 98.43%.

A non-parametric Mann–Whitney (or Wilcoxon rank-sum,
WMW) U-test was conducted to examine whether there was
a noticeable difference between the predicted values and the
observed data obtained from the additional experiments. The
Mann–Whitney U-test is the non-parametric equivalent of a pooled
two-sample t-test. The basic procedure of the Mann–Whitney U-
test is to work with the ranked data. Two independent samples are
first combined into one column, and then the values are ranked
from smallest to largest (where 1 = smallest). Finally, they are bro-
ken down into their original samples, and the total rank scores (U) of
each are summed up. On the basis of the test procedure, an expected
score is first determined as follows [36]:

E(U) = nU(N + 1)/2 (7)

where E(U) is the expectation of U, nU is the sample size of the
sample being tested, and N is the total sample size (N = n1 + n2).
Thereafter, the z score under the normal curve is calculated accord-
ing to the following equation [36]:

z = Umax − E(U)√
n1n2(N + 1)/12

(8)

where Umax is the maximum total rank score, and n1 and n2 are the
sample sizes of the independent samples. According to Eqs. (7) and
(8), the z score was determined to be 0.3024 for the present val-
idation data. Then, the two-tailed probability associated with the
obtained z score under the normal curve was obtained as p = 0.762.

Since the obtained p value was greater than the chosen ˛ level
(0.762 > 0.05), the alternative hypothesis (Ha) was rejected in favor
of the null hypothesis (H0), indicating that there was no statistically
significant difference between the measured data and the predicted
responses.
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Fig. 7. A head-to-head comparison between additional experimental results and
predicted responses; (a) Box-and-Whisker plot showing the distribution of two
independent samples, (b) agreement between two independent samples.

Besides the Mann–Whitney test, a two-sample (unpaired) t-
test was also conducted to evaluate the relationship between the
model outputs and the observed data, as well as to prove statistical
results. The Box-and-Whisker plot depicted in Fig. 7(a) suggests that
both distributions are close enough to normal to use a parametric
hypothesis such as a two-sample t-test, as suggested by Hamilton
[37]. In addition, the outputs given in Table 8 indicate that the vari-
ances (or standard deviations) are roughly equal. Thus, the standard
errors of both samples can be pooled according to the following
equation [37]:

sep = s1 + s2

2

√
1
n1

+ 1
n2

(9)

where sep is the pooled standard error, s1 and s2 are the standard
deviations of the samples, and n1 and n2 are the sample sizes of the
independent samples as similarly defined in the Mann–Whitney U-
test. Following calculation of the pooled standard error, the t-test
statistic is then determined as follows [37]:

tcal = Ȳ1 − Ȳ2

sep
(10)

where tcal is the calculated t-statistic, and Ȳ1 and Ȳ2 are the mean
values of the independent samples. The tabulated t value is obtained
for the given values of degrees of freedom (df = n1 + n2 − 2) and
an ˛ level of 0.05. Results indicated that the calculated t value
(tcal = 0.0558) was found to be less than the tabulated t value
(t�,df = t0.05,18 = ttab = 2.101), indicating that there was no statistically
significant difference between the observed data and the expected
responses. Since tcal < ttab (0.0558 < 2.101), we failed to reject the

null hypothesis (H0) that there was no significant statistical differ-
ence between the independent samples. The two-tailed probability
associated with the calculated t value was determined as p = 0.956
(tcal = 0.0558, df = 18). Since p > ˛ (0.956 > 0.05), two-sample t-test
also indicated that there was no sufficient evidence for a signifi-
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Table 8
Values of coded (xi) and natural (Xi) independent variables and corresponding output and ranked data for the statistical model validation.

Additional
batch no.

Coded factors Uncoded factors
xi = (Xi − X0)/�Xi

Pb(II) removal efficiency (%) Ranked data for the
Mann–Whitney U-test

x1 x2 x3 X1 X2 X3 Observed, Yo (%)a Predicted, Yp (%) Observed Predicted

1 +1 +1 0.478 5.5 50 90 98.07 98.11 18 19
2 +1 −1 −1 5.5 5 5 59.58 55.95 8 7
3 −1 0.111 −0.304 2 30 45 38.96 44.12 3 4
4 +1 +1 +1 5.5 50 120 98.43 95.07 20 16
5 −1 0.111 −0.739 2 30 20 36.23 35.89 2 1
6 −1 0.111 0.478 2 30 90 48.76 50.17 5 6
7 −0.143 0.111 −0.304 3.5 30 45 89.33 84.75 11 9
8 −0.143 0.111 0.478 3.5 30 90 95.09 91.98 17 13
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9 1 0.111 0.478 5.5 30 9
10 1 −1 0.478 5.5 5 9

a Yo indicates the average Pb(II) removal efficiency of triplicate experiments (n = 3

ant difference between the measured and the predicted values,
s previously found in the Mann–Whitney test. Therefore, both
he non-parametric Mann–Whitney test and the two-sample t-test
oncluded with 95% certainty that the proposed quadratic model
rovided a satisfactory fit to the additional experimental data, as
lso seen in Fig. 7(b).

In this study, the goodness of fit of the regression model was
lso checked by the determination coefficient (R2). In this case, the
alue of determination coefficient (R2 = 0.9876) indicated that only
.24% of the total variations were not explained by the quadratic
odel. Furthermore, a very high value of the correlation coeffi-

ient (R = 0.9938) signified an excellent correlation between the
redicted values and the experimental findings. Therefore, the
econd-order prediction model was finally validated by the statis-
ical analysis of the output data.

Finally, the response of the proposed mathematical model in
erms of adsorption capacity (mg Pb(II)/g) was also compared with
max obtained from the equilibrium isotherm. Both experimental
esults and the model outputs were described by the well-known
angmuir isotherm model as a function of equilibrium Pb(II)
oncentration (Ce) and the corresponding equilibrium adsorp-
ion capacity (qe). Results indicated that the adsorption capacity
btained from the model response (26.95 mg/g) was clearly in
greement with that of the equilibrium isotherm (26.53 mg/g). Lin-
ar plots of 1/Ce versus 1/qe showed that determination coefficients
R2) were found to be about 0.997 and 0.98 for the experimen-
al data and the model outputs, respectively. From the engineering
oint of view, the proposed model to describe the Pb(II) adsorption
rocess was also validated by means of the adsorption capacity in
ddition to various descriptive statistics considered in this work.

. Conclusions

The application of a three factor, three-level Box–Behnken
xperimental design combining with RSM and QP based on a
OQO/AMPL optimization algorithm helped in reaching the global
ptimal solution for maximizing Pb(II) removal from aqueous solu-
ion by P. vera L. The proposed mathematical methodology also
rovided a critical analysis of the simultaneous interactive effects
f independent variables, such as initial pH of the solution, initial
oncentration of Pb(II) ions, and contact time, for better under-
tanding of the Pb(II) removal process. The optimum variables were
ound to be 3.97 (x1 = 0.125) for initial pH of the solution, 43.4 ppm
x2 = 0.707) for initial concentration of Pb(II) ions, and 68.7 min

x3 = 0.107) for contact time with a predicted Pb(II) removal effi-
iency of about 100%, which was also higher than any other
emovals obtained in the initial 17 experimental tests.

The adequacy of the developed mathematical model was
hecked with the various descriptive statistics. Predicted values

[

[

93.75 93.55 15 14
89.08 91.42 10 12

obtained using the quadratic model equation were in very good
agreement with the observed values (R2 = 0.9838, R2

a = 0.9630,
R = 0.9919, CV = 5.699%, Cp = 9.9902, DW = 1.784). The statistical
results showed that the first-order main effects of the indepen-
dent variables (pH0, C0, and tC) were found to be more significant
than their respective quadratic effects, indicating that the selected
variables had a direct relationship on the Pb(II) removal efficiency.
The most significant component of the quadratic model was found
as pH0 = for the present application (t = 13.6528, p = 0.000003,
F = 186.40, TPCi = 44.61%). Findings of this study also indicated that
the total percentage contributions of first-order terms demon-
strated the highest level of significance with a total contribution
of 67.67% as compared to the respective TPC values of quadratic
and interaction terms.

Finally, the prediction capability of the proposed model was
verified by additional batch experiments conducted in the exper-
imental scale of the Box–Behnken design. The validation results
clearly confirmed with 95% certainty that a three factor, three-level
Box–Behnken experimental design combining with RSM and QP is
an effective tool for mathematical modeling and factor analysis of
the Pb(II) adsorption process.
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